skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qi, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 19, 2026
  2. Free, publicly-accessible full text available May 19, 2026
  3. Abstract Radiogenic neutrons emitted by detector materials are one of the most challenging backgrounds for the direct search of dark matter in the form of weakly interacting massive particles (WIMPs). To mitigate this background, the XENONnT experiment is equipped with a novel gadolinium-doped water Cherenkov detector, which encloses the xenon dual-phase time projection chamber (TPC). The neutron veto (NV) can tag neutrons via their capture on gadolinium or hydrogen, which release$$\gamma $$ γ -rays that are subsequently detected as Cherenkov light. In this work, we present the first results of the XENONnT NV when operated with demineralized water only, before the insertion of gadolinium. Its efficiency for detecting neutrons is$$({82\pm 1}){\%}$$ ( 82 ± 1 ) % , the highest neutron detection efficiency achieved in a water Cherenkov detector. This enables a high efficiency of$$({53\pm 3}){\%}$$ ( 53 ± 3 ) % for the tagging of WIMP-like neutron signals, inside a tagging time window of$${250}~{\upmu }\hbox {s}$$ 250 μ s between TPC and NV, leading to a livetime loss of$${1.6}{\%}$$ 1.6 % during the first science run of XENONnT. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  4. We report on a blinded search for dark matter with single- and few-electron signals in the first science run of XENONnT relying on a novel detector response framework that is physics model dependent. We derive 90% confidence upper limits for dark matter-electron interactions. Heavy and light mediator cases are considered for the standard halo model and dark matter up-scattered in the Sun. We set stringent new limits on dark matter-electron scattering via a heavy mediator with a mass within 10 20 MeV / c 2 and electron absorption of axionlike particles and dark photons for m χ below 0.03 keV / c 2 . Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  5. The XENONnT experiment, located at the INFN Laboratori Nazionali del Gran Sasso, Italy, features a 5.9 tonne liquid xenon time projection chamber surrounded by an instrumented neutron veto, all of which is housed within a muon veto water tank. Because of extensive shielding and advanced purification to mitigate natural radioactivity, an exceptionally low background level of ( 15.8 ± 1.3 ) events / ( tonne · year · keV ) in the (1,30) keV region is reached in the inner part of the time projection chamber. XENONnT is, thus, sensitive to a wide range of rare phenomena related to dark matter and neutrino interactions, both within and beyond the Standard Model of particle physics, with a focus on the direct detection of dark matter in the form of weakly interacting massive particles. From May 2021 to December 2021, XENONnT accumulated data in rare-event search mode with a total exposure of one tonne · year . This paper provides a detailed description of the signal reconstruction methods, event selection procedure, and detector response calibration, as well as an overview of the detector performance in this time frame. This work establishes the foundational framework for the “blind analysis” methodology we are using when reporting XENONnT physics results. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  6. We search for dark matter (DM) with a mass [ 3 , 12 ] GeV / c 2 using an exposure of 3.51 tonne year with the XENONnT experiment. We consider spin-independent DM-nucleon interactions mediated by a heavy or light mediator, spin-dependent DM-neutron interactions, momentum-dependent DM scattering, and mirror DM. Using a lowered energy threshold compared to the previous weakly interacting massive particle search, a blind analysis of [0.5, 5.0] keV nuclear recoil events reveals no significant signal excess over the background. XENONnT excludes spin-independent DM-nucleon cross sections > 2.5 × 10 45 cm 2 at 90% confidence level for 6 GeV / c 2 DM. In the considered mass range, the DM sensitivity approaches the “neutrino fog,” the limitation where neutrinos produce a signal that is indistinguishable from that of light DM-xenon nucleus scattering. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  7. Elucidation of maize strigolactone biosynthetic pathway has the potential for controlling the parasitic witchweed Striga . 
    more » « less